Shear Forces Enhance Toxoplasma gondii Tachyzoite Motility on Vascular Endothelium
نویسندگان
چکیده
Toxoplasma gondii is a highly successful parasite that infects approximately one-third of the human population and can cause fatal disease in immunocompromised individuals. Systemic parasite dissemination to organs such as the brain and eye is critical to pathogenesis. T. gondii can disseminate via the circulation, and both intracellular and extracellular modes of transport have been proposed. However, the processes by which extracellular tachyzoites adhere to and migrate across vascular endothelium under the conditions of rapidly flowing blood remain unknown. We used microfluidics and time-lapse fluorescence microscopy to examine the interactions between extracellular T. gondii and primary human endothelial cells under conditions of physiologic shear stress. Remarkably, tachyzoites adhered to and glided on human vascular endothelium under shear stress conditions. Compared to static conditions, shear stress enhanced T. gondii helical gliding, resulting in a significantly greater displacement, and increased the percentage of tachyzoites that invaded or migrated across the endothelium. The intensity of the shear forces (from 0.5 to 10 dynes/cm(2)) influenced both initial and sustained adhesion to endothelium. By examining tachyzoites deficient in the T. gondii adhesion protein MIC2, we found that MIC2 contributed to initial adhesion but was not required for adhesion strengthening. These data suggest that under fluidic conditions, T. gondii adhesion to endothelium may be mediated by a multistep cascade of interactions that is governed by unique combinations of adhesion molecules. This work provides novel information about tachyzoite interactions with vascular endothelium and contributes to our understanding of T. gondii dissemination in the infected host. IMPORTANCE Toxoplasma gondii is a global parasite pathogen that can cause fatal disease in immunocompromised individuals. An unresolved question is how the parasites circulate in the body to tissues to cause disease. T. gondii parasites are found in the bloodstream of infected animals and patients, and they have been shown to adhere to and cross the endothelial cells that line blood vessel walls. To investigate these interactions, we devised a microfluidic system to visualize parasites interacting with vascular endothelium under conditions similar to those found in the bloodstream. Interestingly, parasite migration was significantly influenced by the mechanical force of shear flow. Furthermore, we identified a role for the parasite surface protein MIC2 in the initial phase of adhesion. Our study is the first to document T. gondii interactions with endothelium under shear stress conditions and provides a foundation for future studies on the molecules that mediate parasite interaction with the vasculature.
منابع مشابه
Toxoplasma gondii Tachyzoites Cross Retinal Endothelium Assisted by Intercellular Adhesion Molecule-1 In Vitro
Retinal infection is the most common clinical manifestation of toxoplasmosis. The route by which circulating Toxoplasma gondii tachyzoites cross the vascular endothelium to enter the human retina is unknown. Convincing studies using murine encephalitis models have strongly implicated leukocyte taxis as one pathway used by the parasite to access target organs. To establish whether tachyzoites mi...
متن کاملMolecular characterization of Toxoplasma gondii formin 3, an actin nucleator dispensable for tachyzoite growth and motility.
Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet lit...
متن کاملEvaluation of an immunoblotting test based on whole tachyzoite lysate for diagnosis of humoral response of domestic cats infected with Toxoplasma gondii, Rh strain
This study was aimed to detect anti-Toxoplasma gondii antibodies in cats infected with Rh strain of T. gondii by using an immunoblotting method. For this, cats were experimentally infected using tachyzoites harvested from Vero cell cultures. Tachyzoites were then lysed and transferred to polyacrylamide gels followed by blotting to PVDF membranes. An immunoblotting was performed using these mem...
متن کاملTransepithelial Migration of Toxoplasma gondii Is Linked to Parasite Motility and Virulence
After oral ingestion, Toxoplasma gondii crosses the intestinal epithelium, disseminates into the deep tissues, and traverses biological barriers such as the placenta and the blood-brain barrier to reach sites where it causes severe pathology. To examine the cellular basis of these processes, migration of T. gondii was studied in vitro using polarized host cell monolayers and extracellular matri...
متن کاملCpG-oligodeoxynucleotides enhance porcine immunity to Toxoplasma gondii.
Protection against a challenge infection with Toxoplasma gondii VEG strain oocysts was examined in pigs after vaccination with T. gondii RH strain tachyzoites with or without a porcine specific synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs. Six groups of pigs were immunized with incomplete Freund's adjuvant (IFA) and either vehicle, tachyzoites alone or in combin...
متن کامل